
www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 3 • A u t u m n 2 0 0 9

to and from the required standard BASIS
record templates to resolve the data
inconsistency. This solution made the least
impact on Barista's existing code base.

One challenge was already satisfied by
Barista. It has, since its debut, used SQL
for the table inquiry function. The only
additional need was to ensure that the
SQL commands were standardized.

Lastly, Barista and the external database
may both have their own authentication
mechanisms, such as user name and
password, so the connection information
and user credentials needed to be stored
in Barista tables.

Interfacing With the
Third Party Database
BBj and the BASIS SQL Engine offer a
myriad of possibilities and functionality
targeted at solving specific SQL-related
tasks, while abstracting the underlying
complexities. This makes it easy for
BBj developers to work with a RDBMS
database either by using SQL commands
or using objects like the BBjRecordSet.
However, Barista needed to interface
with databases at a deeper level than
these constructs provided. For example,
Barista needed to obtain metadata, control

arista® is an application
development and runtime
framework written in BBj® and,
like thousands of applications

developed with BASIS products, was
initially created to utilize the extremely
fast and efficient native BBx® file system.
Used to create new GUI applications,
refresh old GUI applications, or transform
existing CUI applications to GUI, this
data-driven framework takes over an
enormous amount of the development
effort by simply describing the data
model in Barista's data dictionary. BASIS
realized this metadata concept could
be as revolutionary to the widespread
market of SQL or relational database
applications. To facilitate this, BASIS
decided to "open up" Barista to allow any
JDBC 2.0-compliant relational database
to act as the user data repository! To
accomplish this large goal, BASIS broke
it down into smaller tasks.

Barista Uses Your RDBMS of Choice

Development Tools

 B

> >

14

By Ralph Lance
Software Engineer

The Road Ahead
The first challenge was for BASIS to
change all data I/O from the native BBx
file system to database independent
SQL in order to work with any relational
database. While this would otherwise
be a sizable challenge for any software
house, Barista’s modular construction
reduced it to a manageable project since
most of the data I/O was reasonably
contained.

The next challenge was retrieving all
the required information from the foreign
database. Since database architects
have created their databases in SQL,
it was important to use that metadata
to build the necessary Barista table
and data element descriptions while
accommodating incompatibilities with
the architecture of the BASIS data
dictionary. For example, SQL databases
may allow table and column naming
conventions incompatible with Barista,
so it was necessary to modify these
names without losing track of their
original values.

Integrating with third party databases
also presented Barista with data
layout challenges. BASIS modified
Barista to translate the external data

http://www.basis.com/products/devtools/barista/index.html
http://java.sun.com/developer/onlineTraining/Database/JDBC20Intro/JDBC20.html

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 3 • A u t u m n 2 0 0 9 www.basis.com

that wrap identifiers in SQL statements
to avoid conflicts with reserved words.
This is a good example of using what
the database itself offers as metadata
to avoid hard coding for idiosyncrasies
in different databases. Although the
JDBC 2.0 API is a “standard,” it is up
to the driver developers to implement
the API interfaces and to determine to
what extent they adhere to the standard.
Many drivers also have database-
specific extensions to this standard. The
Barista SQL integration is based on the
JDBC standard and in only a couple of
places does the database product name
play a part in the program logic.

External databases may or may not
support SQL transactions and may have
different capabilities for constraints,
stored procedures, triggers, and the
like. As a result, BASIS does not offer
explicit support for these in Barista.
Unsuccessful SQL operations caused
by constraints will notify the user that
Barista is unable to complete the
process.

Handling large character and binary
objects (CLOBs and BLOBs) are usually
application-specific and currently
handled as non-editable “attachments.”
Barista displays the first 400 bytes in
forms and in the future, will make a call
to an attachment viewer.

Summary
BASIS has tested the SQL integration
with a number of the more popular
relational databases; Oracle, MySQL,
SQL Server, JavaDB/Derby, and BASIS'
own ESQL relational database. Test
for yourselves by checking out some of
the sample demo databases and JDBC
drivers available for download from the
various vendors. Discover first-hand
how SQL integration in Barista now
gives more users more choices when
using BASIS products.

Development Tools

15

For more information about importing, see the tutorials at
www.basis.com/products/devtools/barista/documentation

Read more about Java implementation at
java.sun.com/javase/6/docs/api/java/sql/Connection.html

the volume of data being processed,
and use result set navigation to avoid
constructing individual database-
specific SQL statements for every data
I/O operation.

A new BBj API method came to the
rescue – getJDBCConnection(). It
returns a BBjCollapsableJDBCConnection
object that represents a connection to
the specified database. This object is
an implementation of the java.sql.
Connection interface that opens up
access to the complete functionality
of the JDBC API. This method is the
cornerstone of a BBj custom class
called BBjdbo (BBj JDBC Database
Object) found in the Barista program
bsq_bbjdbo.bbj. The BBjdbo class
wraps many of the java.sql classes
available and handles all of the
interfacing to the SQL database via the
JDBC 2.0-compliant driver.

Instantiation of the BBjdbo object
occurs when connecting to a database
where a native file open would normally
have been performed. Connection and
user credential information from Barista
tables are used to make a connection
to one or more databases. To keep the
connection overhead under control,
the class takes advantage of BBj's
connection pooling feature to cache
database connections. The class also
handles result sets on a per table
basis and manages their “channels” in
a HashMap also stored in the group
namespace.

When importing table description
information from an existing database,
metadata is interrogated for table,
column, and index information. During
the import, table and column names
are modified to fit into Barista’s data
dictionary as needed. The original
names, along with their catalog and
schema, are stored in the Barista
table and column records. Barista
automatically generates data dictionary
keys and their segments from the
obtainable index information. The

import also does its best to identify
primary and foreign key relationships
and sets up these relationships as
validation tables in Barista's data element
definitions. For more information about
importing, see the link at the end of this
article.

After describing tables and their data
elements in Barista, the developer
can easily generate the standard data
maintenance forms and immediately use
them to query and maintain the data in
the external database.

Implementation Details
The actual data access either occurs
from result set navigation (first(), last(),
next(), previous()) or via BBjdbo methods
like getRecordByKey(). Keep in mind that
an SQL “key” translates to a WHERE
condition that may be composed of
more than one segment. To accomplish
this, Barista constructs a HashMap of
<column name>, <operator>, <value>
conditions from the field-based key
segments defined for a table such as
cust_num, =, 000012. The column
name and operator are used to build the
WHERE clause for a prepared statement,
e.g. WHERE cust_num=?. Values are
passed to a method that sets the query
parameters. The use of the Statement.
setObject() method eliminates the burden
of dealing with different data types.

The SELECT statement built by
Barista for inquiries is simply passed
to an execute() method that returns
the SQL result set as a vector of
BBjTemplatedStrings. Barista uses this
vector, instead of the READ RECORD
loop traditionally used to access the
native file system. The maximum number
of result set rows returned to the user
has a configurable global default value to
prevent memory (or user!) overload.

Dealing with Database
Differences
Barista queries the database metadata
for, among other things, the characters

http://www.basis.com/onlinedocs/documentation/index.htm#<id=33958
http://www.basis.com/onlinedocs/documentation/index.htm#<id=8709
http://www.basis.com/onlinedocs/documentation/index.htm#<id=6315
http://www.basis.com/products/devtools/barista/documentation/
http://java.sun.com/javase/6/docs/api/java/sql/Connection.html

